Molekülphysik 1
1. Mechanische Eigenschaften
2. Moleküle in elektrischen und magnetischen Feldern
3. Massenspektroskopie
4. Molekülspektren
5. Große Moleküle, Biomoleküle, Übermoleküle

Festkörperphysik 1
1. Kristallstrukturen
2. Beugung an periodischen Strukturen
3. "Freie" Elektronen in Festkörpern und Bandstrukturen
4. Halbleiter

Semester: ST 2022

Very tentative, and quite overambitious plan for mathematics 4 for physics

1.     Complex analysis: complex numbers, Cauchy-Riemann equations, holomorphic functions, power series; Cauchy theorem and applications (Cauchy inequalities, Liouville theorem)

2.     Fourier series and Fourier transform: basics, including inversion formula and the Schwarz class, uncertainty principle, Bernstein inequality and Sobolev spaces, multipliers and singular integrals, Littlewood-Paley decomposition, distributions

3.     Partial differential equations: (method of characteristics was in math3, so transport done in particular), Fourier methods, three classical equations (Laplace, heat, wave), Laplace transform, weak solutions and abstract methods (Lax-Milgram, Fredholm), energy methods, calculus of variations

4.     Functional analysis: open mapping/closed graph theorem, Hahn-Banach theorem, bounded operators in Hilbert spaces with spectral theory, densely defined unbounded operators, semigroups of operators with applications to evolutionary problems

Literature:

-Stein, Shakarchi: Complex analysis

-Duoandikoetxea: Fourier analysis

-Tao’s notes in Fourier Analysis 254A

-Evans: PDEs

-Rudin: Functional Analysis (with its distribution theory)


Semester: ST 2022

Digitale Materialien zum Modul Fachdidaktik 3.1 (Lehramt Physik)

Semester: ST 2022