Students comprehend the basic terms, phenomena and concepts of atomic and molecular physics. After active participation in the module, they are able to analyze and independently solve tasks from these areas. They can apply the acquired knowledge to typical experiments and transfer them to new problems. They are able to work with terms of atomic and molecular physics and to present and justify their solutions to problems in these areas.


Atomic physics

- Hydrogen atom: Schrödinger equation, orbitals, energy and angular momentum quantization

- Spin and Stern-Gerlach experiment, spin-orbit coupling, relativistic effects

- Atoms with multiple electrons: Pauli principle, Hund's rules, systematics of the atomic structure, periodic table

- Atoms in external fields, spectroscopy, optical transitions, selection rules, Laser

- Fundamentals of quantum statistics: Fermi-Dirac and Bose-Einstein statistics, Bose-Einstein condensation

Molecular physics

- Hydrogen molecule, molecular orbitals (LCAO)

- Chemical bonds, hybridization, quantum chemistry

- Rotational and vibrational states of molecules, degrees of freedom

- Molecular spectroscopy (IR-FTIR, Raman, Brillouin, NMR, fluorescence)

- Carbon backbone, macromolecules, proteins, polymers

- Random walk, polymer and protein size

- Entropic forces, rubber elasticity, persistence length of polymers

- Multipolymer systems, entanglement, tube model and reptation, viscoelasticity

Semester: ST 2021